
Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I

Completed Technology Project (2016 - 2016)

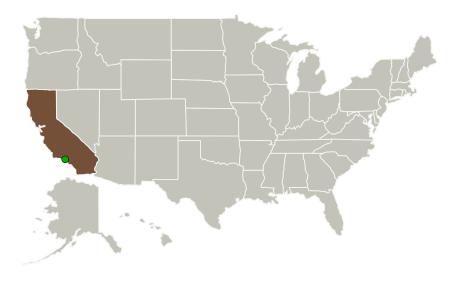
Project Introduction

Conventional PPM laser transmitters, a CW laser followed by a modulator, are inherently inefficient since the data must be carved from the laser's steady output. 95% of the optical power is discarded in a standard telecom RZ format, with another $\geq 8x$ efficiency reduction using a PPM scheme. An alternative is to form the pulse train with a mode-locked laser. However, since the resultant MLL pulse train is periodic, it must produce pulses in every symbol slot, not just once per symbol. This means that for a 32-ary PPM scheme, the MLL optical efficiency is reduced by a factor of at least 32 by discarding the un-needed pulses. In both cases, the electro-optic modulator itself induces an additional 60% optical loss, and requires nearly 0.5W of power to drive. An alternative is to use a low-repetition-rate MLL in combination with a switch fabric to delay each output pulse into the correct PPM slot. However, the use of photonic integrated circuits (e.g., silicon) is prohibitive due to the high intrinsic loss. A 100-MHz PPM data rate scheme requires ~5ns pulse delay. This represents 43-cm propagation in silicon, inducing a power loss \geq 10 dB. Adding the loss due to spiraled delay lines, switch junctions, and coupling on/off chip, the aggregate loss of the switch fabric is 18 to 24 dB, representing a significant efficiency loss. RAM Photonics proposes the development of a qualitatively novel approach to high-efficiency, low-bit-rate laser transmitters compatible with space-borne missions. Specifically, we propose to develop a laser transmitter that attains highly efficiency optical data generation by (1) generating only one optical pulse per symbol at arbitrary temporal location, (2) eliminating all electro-optic modulators, and (3) exploiting a nearly lossless fiber architecture. The new transmitter device has low dissipation (< 0.5 W total) and low SWaP footprint, and can operate at arbitrary data rates and generate any symbol formats.

Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	2	
Project Transitions	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)		
Images	3	
Technology Areas	3	
Target Destinations	3	



Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I

Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
RAM Photonics	Lead Organization	Industry	San Diego, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Project Transitions

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139569)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

RAM Photonics

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

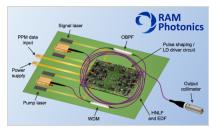

Program Manager:

Carlos Torrez

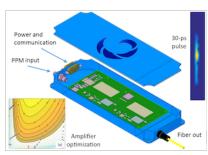
Principal Investigator:

John Marciante

Technology Maturity (TRL)



Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I


Completed Technology Project (2016 - 2016)

Images

Briefing Chart Image

Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I (https://techport.nasa.gov/imag e/131404)

Final Summary Chart Image

Low-Power-Consumption
Integrated PPM Laser Transmitter,
Phase I Project Image
(https://techport.nasa.gov/imag
e/128747)

Technology Areas

Primary:

- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

